Locality, Quantum Many-Body Dynamics, and Gapped Ground State Phases.

Bruno Nachtergaele (UC Davis)

Outline

- I. Locality in quantum lattice systems
- ► II. Lieb-Robinson bounds and infinite system dynamics
- III. The quasi-adiabatic evolution
- ▶ IV. Gapped ground state phases
- V. Stability of spectral gaps
- VI. Invariants of gapped phases

IV. Gapped ground state phases $\|\mathbb{E}\|_{F} = \sup_{\mathbf{x}, \mathbf{y} \in \mathbb{N}} \frac{1}{F(d(\mathbf{x}, \mathbf{f}))} \sum_{\mathbf{x}, \mathbf{y} \in \mathbb{X}} \|\mathbb{E}(\mathbf{x})\|$ Ground states: Consider the class of systems defined by interactions Φ with $\|\Phi\|_F < \infty$, for some *F*-function *F*, for example $F(r) = F_0(r)e^{-ar^{\theta}}$, $a > 0, \theta \in (0, 1]$ $(\Phi \in \mathcal{B}_{a,\theta}).$ Then, we can define a derivation $\delta : \mathcal{A}_{loc} \to \mathcal{A}_{\Gamma}$, by $\begin{array}{c} \text{unbrule} \\ \delta^{\Phi}(A) = \sum_{X, X \cap Y \neq \emptyset} [\Phi(X), A], \quad A \in \mathcal{A}_{Y}, \text{ finite } Y \subset \Gamma, \\ \hline \mathcal{T}_{L}^{\Phi}(A) = e^{i t - S} \\ \hline \end{array}$ which has a closure that is the generator of the dynamics τ_t^{Φ} , again denoted by δ^{Φ} . A state ω on \mathcal{A} is a ground state for the dynamics τ_t with generator δ if It is sufficient to check the ground state inequality for A in a core for δ TEH $A_{loc} \stackrel{A_{loc}}{=} e^{it} \underbrace{[H, \cdot]}_{+} = e^{it} \\ = id + its + \underbrace{(it)}_{+} s^{2} +$ such as \mathcal{A}_{loc} .

 $H = \sum_{n} \mathbb{P}(x);$ $K = \lambda_{n} + A_{n}$ $\sqrt{\sqrt{2}}$ λ = groditote λ. = groditote

For finite systems this definition identifies the states of minimal energy (expectation of H_{Λ}).

Infinite volume limits of finite-volume ground states are ground states.

Gapped ground states

Assume δ^{Φ} has a finite number of mutually disjoint pure ground states: $S^{\Phi} = \{\omega_1, \dots, \omega_n\}.$

We say that the ground states are gapped if there exists $\gamma > 0$, such that for all i = 1, ..., n, we have

$$\omega_i(A^*\delta^{\Phi}(A)) \geq \gamma \omega_i(A^*A), ext{ for all } A \in \mathcal{A}^{\mathrm{loc}}, ext{ with } \omega_i(A) = 0.$$

This is equivalent to saying that the GNS Hamiltonian for the system in the ground state ω_i is a non-negative self-adjoint operator with a one-dimensional kernel and a spectral gap above zero of size $\geq \gamma$.

for any state as a
$$Q_{\mu}$$
, there exists
a fullpart space \mathcal{X}_{μ} , a representation
 $\mathcal{T}_{\mu}: Q_{\mu} \longrightarrow \mathcal{B}(\mathcal{X}_{\mu})$, and vector $\mathcal{S}_{\mu} \in \mathcal{X}_{\mu}$
s.t. $e_{\mu}(A) = \langle \mathcal{S}_{\mu} : \mathcal{T}_{\mu}(A) \cdot \mathcal{S}_{\mu} \rangle$

This rep is called the GNS rep of thoration The it is unique up to emidan equivale meaning if H1, H2, T1, T2, R, N2 $\mathcal{I}_{i}(\mathcal{Q}) \mathcal{D}_{i}$ is dense in \mathcal{Y}_{i} then I U: R, -DR2 st $\mathcal{U} = \mathcal{T}_{2} (A)$ / \mathcal{N} \mathcal{N} = \mathcal{N} $\mathcal{T}, \mathcal{T}_2$ Zf w, and we have emidenily equiv. Eas reps we soes w, w w2.

Examples:

• AKET chain: $H = Z P_{x,x+1}^{(2)}$ 1²⁴ = 7 spin Choin (n=3) * has unique g. s. & and it is sopped 3 (V) $H = \sum_{x} P_{x,x_{+}} + P_{x,x_{+}}$ Spin 1 chain $= Z(1 - P_{x,x_{1}})$ • has 2 grand states one 2-periodic . both one gapped.

Gapped Ground State Phases

Consider, for a fixed choice of Γ and $n_x, x \in \Gamma$, the set $\mathcal{B}_{a,\theta}^{gapped}$ of all interactions $\Phi \in \mathcal{B}_{a,\theta}$, some $a > 0, \theta \in (0,1]$, such that δ^{Φ} has a finite set of gapped ground states. Further restrictions can be imposed (uniqueness, symmetries ...).

Then, a gapped ground state phase is an equivalence class for an equivalence relation defined on $\mathcal{B}_{a,\theta}^{\mathrm{gapped}}$.

Mathematical definitions

Suppose Φ_0 and Φ_1 are two interactions in the class $\mathcal{B}_{a,\theta}$, with ground state sets \mathcal{S}^{Φ_0} and \mathcal{S}^{Φ_1} , respectively.

Definition 1. (Equivalence of interactions)

The interactions Φ_0 and Φ_1 belong to the same phase if there exists a differentiable curve of interactions $[0,1] \ni s \mapsto \Phi(s)$ in $\mathcal{B}_{a,\theta}$ such that

1.
$$\Phi(0) = \Phi_0, \Phi(1) = \Phi_1;$$

- 2. There exists a constant $\gamma' > 0$, such that for all $s \in [0, 1] \Phi(s)$ has gapped ground states with gap $\gamma' > 0$.
- 3. There exist $a' > 0, \theta' \in (0, 1]$, such that $\Phi(\cdot) \in \mathcal{B}^{1}_{a', \theta'}([0, 1])$, defined as the Banach space of interactions for which, with $F(r) = e^{-a'r^{\theta'}}F_{0}(r)$,

$$\sup_{x,y\in\Gamma}\frac{1}{F(d(x,y)}\sum_{\text{finite}X:x,y\in X}\|\Phi(X,s)\|+|X|\|\Phi'(X,s)\|$$

is a bounded by a bounded measurable function of s.

Suppose S_0 and S_1 are two finite sets of pure states of A_{Γ} . **Definition 2.** (Equivalence of states)

The sets of states S_0 and S_1 are automorphically equivalent (in the stretched exponential locality class) if there exists a continuous curve of interactions $[0,1] \ni s \mapsto \Psi(s)$ such that

- 1. There exist $a' > 0, \theta' \in (0, 1]$, such that for all $s \in [0, 1]$, $\Psi(s) \in \mathcal{B}_{a', \theta'}$;
- 2. $[0,1] \ni s \mapsto \Psi(s)$ is piecewise continuous in the norm of $\mathcal{B}_{a',\theta'}([0,1]);$
- 3. The family of automorphisms $\alpha_{s,0}$ generated by $\Psi(s)$ satisfies

$$\mathcal{S}_1 = \{ \omega \circ \alpha_{1,0} \mid \omega \in \mathcal{S}_0 \}.$$

It is easy to show that these two definitions define equivalence relations.

We would like to define a gapped ground state phase as an equivalence class. Which definition should we use?

30

Theorem (Equivalence of the Defs 1 and 2, N arXiv:2205.10460)

(i) (Def 2 \implies Def 1) Let S_0 be a set of mutually disjoint pure ground states gap bounded below by $\gamma > 0$ for the dynamics with generator δ_0 defined by an interaction $\Phi_0 \in \mathcal{B}_{a,\theta}$, for some $a > 0, \theta \in (0,1]$. If a set of states S_1 is automorphically equivalent to S_0 in the stretched exponential locality class, then there exists a differentiable curve of interactions of class $\mathcal{B}^1_{a',\theta'}([0,1])$, for some $a' > 0, \theta' \in (0,1], \Phi(s), s \in [0,1]$, with $\Phi(0) = \Phi_0$, and such that S_1 are gapped ground states with gap bounded below by γ for the dynamics generated by $\Phi(1)$.

(ii) (Def 1 \implies Def 2) Suppose $s \mapsto \Phi(s)$ is a differentiable curve of interactions of class $\mathcal{B}^1_{a,\theta}([0,1])$, such that there exists $\gamma > 0$ and sets of mutually disjoint pure gapped ground states \mathcal{S}_s , $s \in [0,1]$, with gap bounded below by γ . Then, there exists as strongly continuous curve of automorphisms α_s of class $\mathcal{B}_{a',\theta'}([0,1])$, such that

$$\mathcal{S}_{\mathbf{s}} = \{ \omega \circ \alpha_{\mathbf{s},\mathbf{0}} \mid \omega \in \mathcal{S}_{\mathbf{0}} \}.$$

This a mathematical version of the definition of 'gapped phase' given in Xie Chen, Zheng-Cheng Gu, Xiao-Gang Wen, Phys. Rev. B 82, 155138 (2010).

V. Stability of the ground state gap Recap: **Ground states** A state ω on \mathcal{A} is a ground state for the dynamics τ_t with generator δ if

 $\omega(A^*\delta(A)) \ge 0$, for all $A \in \operatorname{dom} \delta$.

It is sufficient to check this condition for A in a core for δ , such as A_{loc} . The GNS representation

The GNS representation of a state on \mathcal{A}_{Γ} is given by a Hilbert space \mathcal{H} , a representation π of \mathcal{A} on \mathcal{H} , and a cyclic vector $\Omega \in \mathcal{H}$ such that, for all $A \in \mathcal{A}$

$$\omega(A) = \langle \Omega, \pi(A)\Omega \rangle, \quad A \in \mathcal{A}_{\Gamma}.$$

For ground states one finds that τ_t is implemented by a strongly continuous group of unitaries on \mathcal{H} :

$$\pi(\tau_t(A)) = U_t^* \pi(A) U_t = e^{itH_\omega} \pi(A) e^{-itH_\omega}$$
$$H_\omega \ge 0, \quad H_\omega \Omega = 0$$

If there is only one ground state for τ_t , we necessarily have that it is a pure state (hence, π is irreducible) and that ker $H_{\omega} = \mathbb{C}\Omega$.

Gapped ground states

Consider the case of a pure ground state with $\ker H_\omega = \mathbb{C}\Omega.$ Then, for any $\gamma > 0$

 $\operatorname{spec} H_\omega \cap (0,\gamma) = \emptyset \text{ iff } \omega(A^*\delta(A)) \ge \gamma \omega(A^*A), A \in \mathcal{A}_{\operatorname{loc}} \text{ with } \omega(A) = 0$

If this condition holds for some $\gamma > 0$, the ground state is gapped. Then

$$\operatorname{gap}(H_{\omega}) = \sup\{\gamma > 0 \mid \operatorname{spec} H_{\omega} \cap (0, \gamma) = \emptyset\}.$$

For infinite systems with Γ without boundary, e.g., $\Gamma = \mathbb{Z}^{\nu}$: gap (H_{ω}) is the bulk gap. If Γ is a half-space of \mathbb{Z}^{ν} , it may be referred to as the edge gap etc.

Stability of Spectral Gaps

Stability of the bulk gap

Define perturbations of the form

Suppose $\{h_x\}_{x\in\Gamma}$ defines generator δ with (for simplicity) a unique ground state ω and a gap $\gamma_0 > 0$:

 $\omega(A^*\delta(A)) \ge \gamma_0 \omega(A^*A), A \in \operatorname{dom} \delta$, with $\omega(A) = 0 \Leftrightarrow \operatorname{gap}(H_\omega) \ge \gamma_0$.

J = B(m) $h_x(s) = h_x + \mathcal{G}\Phi_x, s \in \mathbb{R}, \Phi_x = \sum_{n \in \mathbb{Z}} \Phi(b_x(n)), \text{ with } \|\Phi(b_x(n))\| \leq g(n).$

The gap of the model is stable under such perturbations if for all $\gamma \in (0,\gamma_0)$, there exists $s_0(\gamma) > 0$ such that the gap for the perturbed model, γ_s , satisfies

 $\gamma_{s} \geq \gamma$, for all $|s| < s_{0}(\gamma)$.

Stability theorem for frustration free finite range interactions

We consider perturbations of finite-range (R) frustration-free models with Hamiltonians of the form

$$H_{\Lambda}(s) = \sum_{x \in \Lambda} h_x + s \sum_{x \in \Lambda, n \geq 0} \Phi(b_x(n)) = \sum_{X \subset \Lambda} \Phi(s, X).$$

with uniformly bounded $h_x \in \mathcal{A}_{b_x(R)}$, $\sup_x \|h_x\| < \infty$. $\Gamma \subset \mathbb{R}^{\nu}$, Delone. C1: There are $C > 0, q \ge 0$ such that $gap(H_{b_x(n)}(0)) \ge Cn^{-q}$ (non-zero edge modes do not vanish faster than a power law).

C2:
$$\operatorname{gap}(H_{\omega_0}) = \gamma_0 > 0$$
.
C3: $\|\Phi(b_x(n))\| \le \|\Phi\|e^{-an^{\theta}}$, for some $a > 0, \theta > 0$.
C4: LTQO. Denote by P_{Λ} the projection onto ker $H_{\Lambda}(0)$. There exists a positive decreasing function G_0 for which, for all $A \in \mathcal{A}_{b_x(k)}$,

$$\|P_{b_x(m)}AP_{b_x(m)} - \omega_0(A)P_{b_x(m)}\| \le \|A\|(k+1)^{\nu}G_0(m-k).$$

and

$$\sum_{n\geq 1} n^p G_0(n) < \infty, \text{ some } p > 4\nu + q$$

Conte er comple.

gs. highle (expressiolly bogaret

but gaps not stable

Not assuming a uniform gap in finite volume!

Figure: Penrose tiling. Ammann-Beenker tiling. Edges state or not? (T. Loring, J. Math. Phys. **60**, 081903 (2019))

38

hy is functional free by $\beta \circ$ Hy = $\sum_{x \in A} h_x = \beta \circ$; Froo kenthy $\# 2 \circ$ (Stability of the bulk gap, N-Simfs-Young, arXiv:arXiv:2102.07209) If conditions C1-C4 are satisfied, then, for all $\gamma \in (0, \gamma_0)$, there is a constant $\beta > 0$, such that the ground state, ω_s , for $\Phi(s)$, with

$$|s| \le rac{\gamma_0 - \gamma}{\beta \gamma_0}$$

is unique, and the gap of $H_{\omega_s} > \gamma$.

Proved using the strategy of Bravyi-Hastings-Michalakis 2010, applied to the GNS Hamiltonian. β is explicit:

$$\beta = C_0 \sum_n n^{q+\nu} G_0(n).$$

For a model with a gap above the ground state to represent a gapped phase, the gap should be stable under a broad class of perturbations.

$$H_{\Lambda}(s) = H_{\Lambda}(0) + sV_{\Lambda}$$

The spectral gap of $H_{\Lambda}(s)$ above the 'ground state' is at least γ for all $0 \le s \le s_{\gamma}^{\Lambda}$.

Stability means that there is a Λ -independent lower bound for s_{γ}^{Λ} .

VI. Invariants. Ogata's construction for Symmetry Protected Topologic (SPT) Phases

SPT phases are gapped ground state phases defined by restricting to $\Phi \in \mathcal{B}_{a,\theta}^{\mathrm{gapped}}$ that share a symmetry given by a representation of a group G, and also requiring that the interpolating curves have that symmetry at every point.

Furthermore, one focusses on the trivial phase in $\mathcal{B}_{a,\theta}^{\mathrm{gapped}}$ (without symmetry condition).

Example

The AKLT chain (Affleck-Kennedy-Lieb-Tasaki 1987-88) is the spin-1 chain with nearest neighbor interaction given by

$$P_{x,x+1}^{AKLT} = \frac{1}{3}1 + \frac{1}{2}\mathbf{S}_{x} \cdot \mathbf{S}_{x+1} + \frac{1}{6}(\mathbf{S}_{x} \cdot \mathbf{S}_{x+1})^{2}$$

which is a 5-dim projection. In (Bachmann-N 2014) we constructed a C^1 -curve of projections P(s) such that $P(1) = P^{AKLT}$ and the model with nn interaction P(0) has a unique product ground state in the TL and we show a uniform positive lower bound for the gap for $s \in [0, 1]$. This implies that the AKLT chain belongs to the same phase as the model with a unique product ground state (the trivial phase).

In contrast, if we one restricts interpolations that respect spin rotation symmetry about 1 axis and an additional \mathbb{Z}_2 symmetry, an index argument shows that any curve connecting the AKLT model with a model in the trivial phase, must pass through a phase transition where the gap closes (Tasaki 2018, Ogata 2019-20). This implies that the AKLT chain belongs to a SPT phase distinct from the trivial phase.

The 'Chen-Gu-Wen-Pollmann-Turner-Berg-Oshikawa-Ogata' index

- 1. The AKLT chain
- 2. Ogata's general construction

AKLT: + 1/2 $\begin{array}{c}
\downarrow \\
\mathcal{U}(g) \\
\mathcal{S} \in SO(3^{1});
\end{array}$ $g = (\hat{u}, \Theta)$ $\int (\hat{c}, \Theta)$ $\hat{v} \in (\mathbb{R}^{3})$ $\hat{v} \in (\mathbb{R}^{3})$ $\hat{v} \in (\mathbb{R}^{3})$ $\left[\begin{array}{c} P^{(2)} \\ P^{(2)} \\ P^{(2)} \\ Q^{(2)} \\ Q^{(2)$ din Prei Plant = 4

 $\in (C^{2})^{\otimes N}$ a, ら こ う 士 り $\begin{array}{c} \psi & \mathcal{L}_{B} \\ = & (1) \\ \overline{L}_{I} & (1) \\ \overline{L}_{L$ $E\left(\begin{array}{c} 0 \\ 0 \end{array}\right)^{2} \left(\begin{array}{c} 0 \end{array}\right)^{2} \left(\begin{array}{c} 0 \\ 0 \end{array}\right)^{2} \left$ ken H [1,m] $y = \frac{1}{\sqrt{2}}(1+-) - (-+)$ $P: COC - DC^2 : ante spin$ $spir1_2 \otimes spir1_2 = spir \otimes \otimes spir1$ 5 CZ VBS

N(g): Spin/2 rep (of SU(2)) $P_{(N(8))}^{(1)} = U(3) P^{(1)}$ $= i O \hat{n} \cdot \bar{S}$ $g = e^{-i O \hat{n} \cdot \bar{S}}$ y = e $E_{x} (u(g))^{\otimes h} (u(g))^{\otimes 2} = \psi_{[i,n]}^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} = \psi_{[i,n]}^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} = \psi_{[i,n]}^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} = \psi_{[i,n]}^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} = \psi_{[i,n]}^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes (g)} = \psi_{[i,n]}^{\otimes (g)} (u(g))^{\otimes (g)} (u(g))^{\otimes$ Synchy acts on Pertlein envigerors) $\overset{(12)}{\mathcal{D}(e)} i \otimes \mathcal{T} n \cdot \tilde{S} = -\mathbb{I}_{2}^{*}$

tober live to gover of vig) tober live y a, B y d v - D o Ei, n D y d Ei, o) Projecture representations of a groop & $U_g U_{e_1} = c(g,e_1) U_{ge_1} \quad (g,e_1) \in U(1)$ $U_{g} U_{g} U_{g} U_{g} = c(h, k) U_{g} U_{g} = c(h, k) c(g, h, k)$ $I_{g} U_{g} U_{g} = c(h, k) U_{g} U_{g} = c(h, k) c(g, h, k)$ ((g &) ((g & , b)) U g & le clg,h) (jgli Ulz = $\mathcal{C}(g, \mathcal{Q}) = \mathcal{Q}(g)\mathcal{Q}(\mathcal{Q}, \mathcal{Q})$ > 2- cocycle

equivale dan for a group HG, MG)

her a abelie groep stuche.

 $\frac{\mathcal{H}(\mathbb{Z}_2 \times \mathbb{Z}_2, \mathcal{U}(1))}{-} = \mathbb{Z}_2$ 30,11

VI.2 Ogata's construction of an SPT invariant for quantum spin chains

Setting: $\Gamma=\mathbb{Z},$ an interaction Φ with a unique gapped ground state in the trivial phase.

Concretely, $\Phi \in \mathcal{B}_{a,\theta}^{\mathrm{gapped}}$, and Φ is connected by a differentiable gapped path to Φ_0 , defined by

$$\Phi_0(X) = 0$$
, unless $X = \{x\}, x \in \Gamma$, and $\Phi(\{x\}) = (\mathbb{1} - |0\rangle\langle 0|)_x$.

 Φ_0 has a unique gapped ground state given by the product state

$$\bigotimes_{x} \langle 0| \cdot |0\rangle.$$

 Φ is assumed to have a local symmetry given by unitary representations $U_x(g)$ of a group G. For the infinite chain this symmetry is described by the automorphisms

$$eta_g(A) = \left(\bigotimes_x U_x(g)^*\right) A\left(\bigotimes_x U_x(g)\right), A \in \mathcal{A}_\mathbb{Z}$$

I has the G-symmetry (z(D(x))= D(x), 4x.

For Symmetry Protected Phases, we define equivalence by only using differentiable paths of interactions that all have the same *G*-symmetry.

We want an invariant for the resulting equivalence classes of G-symmetric interactions with a unique gapped ground state which is equivalent to Φ_0 (without the symmetry).

Theorem (Ogata 2020) There exists an $H^2(G, U(1))$ valued invariant for the SPT equivalence classes.

Coincides with the invariants given by Pollmann-Turner-Berg-Oshikawa, 2010-11 and Chen-Gu-Wen, 2020-11 in a more restricted context.

The $H^2(G, U(1))$ -valued invariant classifies the projective representations of G. The proof of the theorem is by constructing such a representation.

Inspired by what we found for the AKLT chain, we look for a unitary implementation of the symmetry G on a half-chain.

Starting point: $\Phi \sim \Phi_0$ implies the existence of a gapped interpolating path $\Phi(s), s \in [0, 1]$, $\Phi(0) = \Phi_0, \Phi(1) = \Phi$, and an associated interaction $\Psi(s)$, that generates the quasi-adiabatic evolution α_s . In particular

$$\omega_1 = \omega_0 \circ \alpha_1.$$

Important property: $\Psi \in \mathcal{B}_{a',\theta'}([0,1])$, i.e., of fast decay. This means $\Psi(s)$ can be decoupled by a bounded perturbation. r=R=rur Define $\Gamma_L = (-\infty, 0]$ and $\Gamma_R = [1, \infty)$ and $\tilde{\Psi}(s)$ such that $\Psi(s) = \tilde{\Psi}(s) + V(s), \text{ such that } \tilde{\Psi}(s,X) \neq 0 \implies X \subset \Gamma_L \text{ or } X \subset \Gamma_R.$ Considering V(s) as a perturbation and using interaction picture gives unitaries U(s) s.t. $\psi(s) = (\alpha_s) = (\alpha_s) + (\alpha_s)$ $\frac{d}{ds} = -iV^{\text{int}}(s)U(s), \quad U(0) = 1$ and $V^{\mathrm{int}} = \tilde{lpha}_s^{-1} p$

Since
$$\omega_0$$
 is product and $\tilde{\alpha}_s = \tilde{\alpha}_s^L \otimes \tilde{\alpha}_s^R$, we have
 $\omega_1 = \omega_0 \circ \alpha_1 = \omega_0 \circ \tilde{\alpha}_1 \circ \operatorname{Ad} U_1.$
In other words, we have states ω_1^L and ω_1^R of the half-chains such that
 $\omega_1 = \omega_1^L \otimes \omega_1^R \circ \operatorname{Ad} U_1$
In particular $\omega_1 \simeq \omega_1^L \otimes \omega_1^R$ and also $\omega_1 \circ \beta_g \simeq (\omega_1^L \otimes \omega_1^R) \circ \beta_g.$
Next, recall $\omega_1 \circ \beta_g = \omega_1$ and $\beta_g = \beta_g^L \otimes \beta_g^R.$
Therefore,
 $(\omega_1^L \otimes \omega_1^R) \circ \beta_g = (\omega_1^L \circ \beta_g^L) \otimes (\omega_1^R \circ \beta_g^R) \simeq (\omega_1^L \otimes \omega_1^R) \otimes \omega_1^R$
This gives
 $\omega_1^R \circ \beta_g^R \simeq \omega_1^R$
and also
 $\omega_1^O \otimes \beta_g^R \simeq (\omega_1^L \otimes \beta_g^R) \simeq (\omega_1^L \otimes \omega_1^R \simeq \omega_1^R)$
The lefthand side is unitarily equivalent to $\omega_1 \circ \beta_g^R$, due to (1).

 $\omega_{1}^{\prime}\otimes\omega_{n}^{\prime}=\langle \mathcal{S}_{1},\mathcal{A}(\mathcal{U})\pi(\mathcal{A})\pi(\mathcal{U}^{\dagger})\mathcal{S}\rangle$

 $= \langle \vec{e}, \pi(A) \mathcal{K} \rangle$

Conclusion:

 $\omega_1 \circ \beta_{\sigma}^R \sim \omega_1$ This means that β_g^R is implemented by a unitary U_g^R in the GNS representation of ω_1 : $\omega_1 \circ \beta_g^R(A) = \langle \Omega, (U_g^R)^* \pi(A) U_g^R \Omega \rangle.$ Since π is an irreducible representation and $(U_h^R)^*(U_g^R)^*\pi(\cdot)U_g^R U_h^R = \pi \circ \beta_{gh} = (U_{gh}^R)^*\pi(\cdot)U_{gh}^R$ whence $U_{gh}^{R}(U_{h}^{R})^{*}(U_{g}^{R})^{*}\pi(\cdot)U_{g}^{R}U_{h}^{R}(U_{gh}^{R})^{*}=\pi(\cdot),$ we must gave $c(\overline{g,h}) \in U(1)$ s.t. $U_g^R U_h^R (U_{gh}^R)^* = c(g, h) \mathbb{1}$ with c belonging to an equivalence class of 2-cycles labeled by an element of $H^2(G, U(1))$. $H(SO(3), W(1)) = \mathbb{Z}_{2}$

gerendizations: Ogata - 2 dém greater spi sytters +P(G, U(1)) - 1 dém Gernice Choirs

- - -

- 2 dém Jerria Systems

. - -

Recent results on the phase diagram of O(n) spin chains O(n) chains: $\Gamma = \mathbb{Z}, \mathcal{H}_x = \mathbb{C}^n$. AKLT model, n = 3: only non-zero interactions are $\Phi(\{x, x+1\}) = h_{x,x+1} = \frac{1}{2} \mathbf{S}_x \cdot \mathbf{S}_{x+1} + \frac{1}{6} (\mathbf{S}_x \cdot \mathbf{S}_{x+1})^2 + \frac{1}{4} \mathbb{1} = P_{x,x+1}^{(2)}.$ The general isotropic nearest neighbor interaction for n = 3: $h_{x,x+1} = \cos \phi \boldsymbol{S}_x \cdot \boldsymbol{S}_{x+1} + \sin \phi (\boldsymbol{S}_x \cdot \boldsymbol{S}_{x+1})^2.$ Alternative way to represent the AKLT Hamiltonian in terms of 'swap' operator, T, and a rank-1 projection:

$$2P^{(2)} = T - 2P^{(0)} + 1,$$

where $P^{(0)}$ projects onto the singlet state. There is an o.n. basis e_1, e_0, e_{-1} such that

$$\psi = \frac{1}{\sqrt{3}}(e_1 \otimes e_1 + e_0 \otimes e_0 + e_{-1} \otimes e_{-1}).$$

This generalizes to *n*-dimensional spins and arbitrary coupling constants as follows

$$uT + vQ, \quad u, v \in \mathbb{R}$$

where Q is the projection to

$$\psi = \frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n} |\alpha, \alpha\rangle.$$

Phase diagrams. The stability of gapped ground states The gapped ground state phases are open regions in space of interactions, not isolated special points, meaning they are stable. For gapped, frustration-free models satisfying no-local order condition good general stability results exists:

Yarotsky 2006, Bravyi-Hastings-Michalakis 2010, Michalakis-Zwolak 2013, Szehr-Wolf 2015, Fröhlich-Pizzo (et al.) 2018-20, N-Sims-Young 2021.

These results prove the AKLT point is part of an open region on the red phase of the n = 3 phase diagram.

The uniqueness condition of the gapped ground state can be relaxed (N-Sims-Young 2021) but we have no general stability results yet that do not require frustration free property.

The point u = 0, v = -1, where we have dimerization, is not frustration free:

 $\langle h_{x,x+1} \rangle > \inf \operatorname{spec}(h_{x,x+1}).$

Recent proof of open gapped region in phase diagram for large *n* (Björnberg-Mühlbacher-N-Ueltschi, 2021).

Figure: Ground state phase diagram for the S = 1 chain (n = 3) with nearest-neighbor interactions $\cos \phi S_x \cdot S_{x+1} + \sin \phi (S_x \cdot S_{x+1})^2$.

- ▶ φ = 0 Heisenberg AF chain, Haldane phase (Haldane, 1983)
- ► tan φ = 1/3, AKLT point (Affleck-Kennedy-Lieb-Tasaki, 1987,1988), FF, MPS, gapped
- $\tan \phi = 1$, solvable, gapless, SU(3) invariant, (Sutherland, 1975)
- $\phi \in [\pi/2, 3\pi/2]$, ferromagnetic, FF, gapless
- ▶ φ = −π/2, solvable, SU(3) invariant, Temperley-Lieb algebra, dimerized, gapped (Klümper; Affleck,1990)
- ► $\phi = -\pi/4$ gapless, Bethe-ansatz, (Takhtajan; Babujian, 1982)

Figure: Ground state phase diagram for the chain with nearest-neighbor interactions uT + vQ for $n \ge 3$, studied by Tu & Zhang, 2008.

v = −2nu/(n − 2), n ≥ 3, Bethe ansatz point (Reshetikhin, 1983)

- v = -2u: frustration free point, equivalent to ⊥ projection onto symmetric vectors ⊖ one. Unique g.s. if n odd; two 2-periodic g.s. for even n; spectral gap in all cases and stable phase (N-Sims-Young, 2021).
- ▶ u = 0, v = -1. Equivalent to the $SU(n) P^{(0)}$ models aka Temperley-Lieb chain; Affleck, 1990, Nepomechie-Pimenta 2016). Dimerized for all $n \ge 3$ (Aizenman, Duminil-Copin, Warzel, 2020); 'Stability' for large n(Björnberg-Mühlbacher-N-Ueltschi, 2021).