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IV. Gapped ground state phases I
Ground states: ) EL\

> WBoo|
Qufv Flixen) xe <
Consider the class of systems defined by interactions @ W|tF1<a||¢||F < 00,
for some F—function F, for example F(r) = Fo(r)e""”g, a>0,60¢€(0,1]
(‘D € Ba’g).

Then, we can define a derivation ¢ : Aj,c — Ar, by

w\ow“f:% SP(A) = > [O(X),Al, AcAy, finteYCl, 8

X, XNY#D
—

L€
-

which has a closure that is the generator of the dynamics 7, again

denoted by §°.

A state w on A is a ground state for the dynamics 7 with generator ¢ if

T @—>C

— Lw(A*é(A ) >0, for all A€ doms. ﬁm’!" )=t
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It is sufficient to check the ground state inequality for A in a core for 6,
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For finite systems this definition identifies the states of minimal energy
(expectation of Hp).

Infinite volume limits of finite-volume ground states are ground states.
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Gapped ground states
Assume 6® has a finite number of mutually disjoint pure ground states:
S¢ = {wl, ce ,w,,}.

We say that the ground states are gapped if there exists v > 0, such that
forall i=1,...,n, we have -_ A

wi(A*6®(A)) > ywi(A*A), for all A€ A°° with w;(A) = 0.
— —
This is equivalent to saying that the GNS Hamiltonian for the system in
the ground state w; is a non-negative self-adjoint operator with a
one-dimensional kernel and a spectral gap above zero of size > ~.
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Gapped Ground State Phases

Consider, for a fixed choice of I and n,, x € T, the set B2 of all
interactions ® € Ba,p, some a > 0,0 € (0,1], such that 5® has a finite set
of gapped ground states. Further restrictions can be imposed
(uniqueness, symmetries ...).

Then, a gapped ground state phase is an equivalence class for an
equivalence relation defined on B&4PPe?.
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Mathematical definitions

Suppose @y and ®; are two interactions in the class B, ¢, with ground
state sets S® and S*1, respectively.

Definition 1. (Equivalence of interactions)

The interactions g and ®; belong to the same phase if there exists a
differentiable curve of interactions [0,1] 3 s — ®(s) in B, such that

L ®(0) = ®g, d(1) = ¥y;
2. There exists a constant 7/ > 0, such that for all s € [0, 1] ®(s) has
gapped ground states with gap ' > 0.

3. There exist a’ > 0,6’ € (0, 1], such that ®(-) € B}, 4([0,1]), defined
as the Banach space of interactions for which, with

F(r)=e="" Fo(r),

1
Sup =———~ (X, s)|| + [X[[|®(X, s)]
28 F000) 327 e

is a bounded by a bounded measurable function of s.
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Suppose Sy and S; are two finite sets of pure states of Ar.

Definition 2. (Equivalence of states)

The sets of states Sp and Sy are automorphically equivalent (in the
stretched exponential locality class) if there exists a continuous curve of
interactions [0,1] 3 s — W(s) such that

1. There exist a’ > 0,0’ € (0, 1], such that for all s € [0, 1],
V(s) € By o;

2. [0,1] > s — W(s) is piecewise continuous in the norm of
B 6-([0,1]);

3. The family of automorphisms «s o generated by W(s) satisfies

81 = {w_oo 1,0 | W?E S()}
A — <
=
It is easy to show that these two definitions define equivalence relations.

We would like to define a gapped ground state phase as an equivalence
class. Which definition should we use?
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Theorem (Equivalence of the Defs 1 and 2, N arXiv:2205.10460)

(i) (Def 2 = Def 1) Let Sy be a set of mutually disjoint pure ground
states gap bounded below by ~y > 0 for the dynamics with generator dg
defined by an interaction &g € B, ¢, for some a > 0,60 € (0,1]. If a set of
states Sy is automorphically equivalent to Sy in the stretched exponential
locality class, then there exists a differentiable curve of interactions of
class BY, 4/([0,1]), for some a’ > 0,6" € (0,1], ®(s), s € [0, 1], with

®(0) = &y, and such that Sy are gapped ground states with gap
bounded below by ~y for the dynamics generated by $(1).

(ii) (Def 1 = Def 2) Suppose s — ®(s) is a differentiable curve of
interactions of class 8379([0, 1]), such that there exists v > 0 and sets of
mutually disjoint pure gapped ground states S, s € [0, 1], with gap
bounded below by ~y. Then, there exists as strongly continuous curve of
automorphisms as of class By ¢/([0,1]), such that

Ss ={woasg|we So}.

This a mathematical version of the definition of ‘gapped phase’ given in
Xie Chen, Zheng-Cheng Gu, Xiao-Gang Wen, Phys. Rev. B 82, 155138 (2010).
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V. Stability of the ground state gap Recap: Ground states
A state w on A is a ground state for the dynamics 7 with generator ¢ if

w(A*5(A)) >0, for all A € domd.

It is sufficient to check this condition for A in a core for §, such as Ajqc.
The GNS representation
The GNS representation of a state on Ar is given by a Hilbert space H, a
representation 7 of A on H, and a cyclic vector Q € H such that, for all
Ac A

w(A)=(Q,7(A)Q), AecAr.

For ground states one finds that 7; is implemented by a strongly
continuous group of unitaries on H.:

7(A)) = Ui (AU = eHom(A)e i
H, >0, HQ—O

If there is only one ground state for 7, we necessarily have that it is a
pure state (hence, 7 is irreducible) and that ker H,, = CQ.
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Gapped ground states
Consider the case of a pure ground state with ker H,, = C£. Then, for
any v >0

spec H, N (0,7) = 0 iff w(A*5(A)) > yw(A*A), A € Ajoe with w(A) =0
If this condition holds for some v > 0, the ground state is gapped. Then
gap(H,,) = sup{vy > 0 | spec H, N (0,~) = 0}.

For infinite systems with I without boundary, e.g., [ = Z": gap(H,) is
the bulk gap. If T is a half-space of Z”, it may be referred to as the edge
gap etc.
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Stability of Spectral Gaps

WHAT DO YOU MEAN

BY 'STABILITY'?
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Stability of the bulk gap
Suppose {hy}xer defines generator § with (for simplicity) a unique
ground state w and a gap o > O:

w(A*5(A)) > vow(A*A), A € dom §, with w(A) =0 < gap(H.,) > 7o.

Define perturbations of the form & = %7((-“\

hy(s) = hyx 4—@%,5 eR, O, = Zd)(bx(n)), with [[®(bc(n))|| < g(n).

The gap of the model is stable er such perturbations if for all
v € (0,7), there exists[sp(7y) > 0|such that the gap for the perturbed

model, s, satisfies

Vs 2, for all |s| < so(7)-
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Stability theorem for frustration free finite range
interactions

We consider perturbations of finite-range (R) frustration-free models
with Hamiltonians of the form

HA(S) = hets Y d(b(n) =Y (s, X).

xEN x€N,n>0 XCA

with uniformly bounded h, € A, (g, sup, ||h|| < oo. I C R¥, Delone.
C1: There are C > 0,q > 0 such that gap(Hp,()(0)) > Cn~9 (non-zero
edge modes do not vanish faster than a power law).

C2: gap(H.,) =7 > 0.

C3: || ®(by(n))|| < [|®]le=2"", for some a > 0,6 > 0.

C4: LTQO. Denote by Pa the projection onto ker Hy(0). There exists a
positive decreasing function Go for which, for all A € Ay (4,

1Pt (m) AP, (m) — wo(A) Py, (my || < [ All(k + 1)” Go(m — k).

and
Z nP Go(n) < oo, some p > 4v +q
n>1
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Not assuming a uniform gap in finite volume!

3 5

o
(a)
FIG. 7. (a) The radius is 15, ()

Figure: Penrose tiling. Ammann-Beenker tiling. Edges state or not? (T. Loring,
J. Math. Phys. 60, 081903 (2019))
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Theorem 2 A\ A
(Stability of the bulk gap, N-SinfsYoung, arXiv:arXiv:2102.07209)

If conditions C1-C4 are satisfied, then, for all v € (0,70), there is a
constant 8 > 0, such that the ground state, ws, for ®(s), with
Y —7

s| <
sl B0

is unique, and the gap of H,, > 7.

Proved using the strategy of Bravyi-Hastings-Michalakis 2010, applied to
the GNS Hamiltonian. § is explicit:

B= G Z n9t" Go(n).
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For a model with a gap above the ground state to represent a gapped
phase, the gap should be stable under a broad class of perturbations.

H/\(S) = H/\(O) + SV/\

E) t s

The spectral gap of Ha(s) above the ‘ground state’ is at least ~ for all
0<s< s,’y\.

Stability means that there is a A-independent lower bound for sz\.
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VI. Invariants. Ogata’s construction for Symmetry
Protected Topologic (SPT) Phases

SPT phases are gapped ground state phases defined by restricting to

o c Bgapped that share a symmetry given by a representation of a group
G, and aIso requiting that the interpolating curves have that symmetry
at every point.

ijiepped (

Furthermore, one focusses on the trivial phase in without

symmetry condition).
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Example
The AKLT chain (Affleck-Kennedy-Lieb-Tasaki 1987-88) is the spin-1 chain
with nearest neighbor interaction given by

PANT = J14 28, St + £(S- el
which is a 5-dim projection. In (Bachmann-N 2014) we constructed a
Cl-curve of projections P(s) such that P(1) = PAKLT and the model
with nn interaction P(0) has a unique product ground state in the TL
and we show a uniform positive lower bound for the gap for s € [0, 1].
This implies that the AKLT chain belongs to the same phase as the
model with a unique product ground state (the trivial phase).

In contrast, if we one restricts interpolations that respect spin rotation
symmetry about 1 axis and an additional Z; symmetry, an index
argument shows that any curve connecting the AKLT model with a
model in the trivial phase, must pass through a phase transition where
the gap closes (Tasaki 2018, Ogata 2019-20). This implies that the AKLT
chain belongs to a SPT phase distinct from the trivial phase.
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The
‘Chen-Gu-Wen-Pollmann-Turner-Berg-Oshikawa-Ogata’
index

1. The AKLT chain

2. Ogata's general construction
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V1.2 Ogata’s construction of an SPT invariant for
quantum spin chains

Setting: [ = Z, an interaction ® with a unique gapped ground state in
the trivial phase.

Concretely, ® € Bfigpped, and @ is connected by a differentiable gapped
path to ®g, defined by

®o(X) =0, unless X = {x},x €T, and d%({x}) = (1 — |0){0])«-

®y has a unique gapped ground state given by the product state
(0l - 0).
X

® is assumed to have a local symmetry given by unitary representations
Ux(g) of a group G. For the infinite chain this symmetry is described by
the automorphisms

Bg(A) = (® Ux(g)*) A <® Ux(g)> 7A S .AZ~



B s o Gropmediy (R (BeO)= i) wx.
For Symmetry Protected Phases, we define equivalen€e by only using
differentiable paths of interactions that all have the same G-symmetry.

We want an invariant for the resulting equivalence classes of
G-symmetric interactions with a unique gapped ground state which is
equivalent to ®q (without the symmetry).

Theorem (Og

There exists a
classes.

valued invariant for the SPT equivalence

Coincides with the invariants given by Pollmann-Turner-Berg-Oshikawa,
2010-11 and Chen-Gu-Wen, 2020-11 in a more restricted context.

The H?(G, U(1))-valued invariant classifies the projective representations
of G. The proof of the theorem is by constructing such a representation.

Inspired by what we found for the AKLT chain, we look for a unitary
implementation of the symmetry G on a half-chain.
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Starting point: ® ~ ®q implies the existence of a gapped interpolating
path ®(s),s € [0,1], ¥(0) = $g, d(1) = ®, and an associated interaction
W (s), that generates the quasi-adiabatic evolution as. In particular

W1 = Wp © Q1.

— ——
Important property: W € By ¢/([0,1]), i.e., of fast decay. This means
W(s) can be decoupled by a bounded perturbation. =yt
Ce-

Define I, = (—o0,0] and Mg = [1,00) and W(s) such that
— e

W(s) = W(s) + V(s), such that U(s,X)#0 = X C T or X C Tg.
g— ”__.
Considering V( ) as a perturbation and using interaction plcture gives

unitaries U(s %@""h) h
\r@) C/@ @ AdU(S 8 \YCS)
U(s) is the solution of M&(&') LL AW

9 vimsus), U(o) =1
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. . ~ _ NL ~
Since wy is product and &s = a; @ &

L
R, we have Co = oo,

L
\a°3

L
W (Z‘
(s
In other words, we have states wi and wf c';?the half-chains such that

Sk prepita )
Wy = wlL ® wf o C (1)
In particular w; ~ whk ® wf and also wy o B4

w1 = wp ooy =wgodyoAdU.
—_—

@(wf ® wri) o Bg.
= _— = —_—
Next, recall wy o g = wy and B = 5;‘ ® B

—
Therefore,

—

e

—

-~ W(°PS ?}l
L R L gl R _ AR L R
(wy ®@wy') 0 Bg = (wy 0 Bg) @ (wy 0 Bg) ~luy ~ wy ®@wy
This gives

R _ pR R
wy' o fg 7w
and also _p
o,
/

L R gR Lo, R

! ® (w0 Bg) v wy ®wr ~ w
> —_— =

The lefthand side is unitarily equivalent to wy o 8%, due to (1).

—

——
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Conclusion:
R
wy 0 Py ~ w1

This means that Bg is implemented by a unitaryl U;)in the GNS
representation of wy:

10 05 = (@ (V) AU, Fi(‘?ac [

Since 7 is an irreducible representation and

(UR)"(UF) =(YUF UF =fm o Bg} = (Ugh) () Ugh

whence
Uge (UR) (USY 7 (WS UR (U] = 7 (),

—

we must gave c(g, h) € U(1) s.t.

UEUR(US)” =Ee: )

—_— —
with ¢ belonging to an equivalence class of 2-cycles labeled by an

element of H2(G, U(1)). z _
Y0 T sem)ma) = 2,
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Recent results on the phase diagram of O(n) spin chains

O(n) chains: T =Z, H, = C".

AKLT model, n = 3: only non-zero interactions are

O({x, X+ 1}) = s = 18, - Spin + 5(Su - Sxp1)? + 11 =PC), .

The general isotropic nearest neighbor interaction for n = 3:

hx,x+1 = COs ¢sx : Sx+1 + sin QS(SX : Sx+1)2'

Alternative way to represent the AKLT Hamiltonian in terms of ‘swap’

operator, T, and a rank-1 projection: T&Q‘HQ \{'®\°
2P® =T —2PO 1 1,

where P(® projects onto the singlet state. There is an o.n. basis
€1, €y, €_1 such that

1
Y= 7(€1®61+60®€o+€71®e,1).

V3

This generalizes to n-dimensional spins and arbitrary coupling constants
as follows
uT +vQ, u,veR

where Q is the projection to

1 n
w:ﬁ;|a,a>. =
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Phase diagrams. The stability of gapped ground states
The gapped ground state phases are open regions in space of
interactions, not isolated special points, meaning they are stable.

For gapped, frustration-free models satisfying no-local order condition
good general stability results exists:

Yarotsky 2006, Bravyi-Hastings-Michalakis 2010, Michalakis-Zwolak 2013,
Szehr-Wolf 2015, Frohlich-Pizzo (et al.) 2018-20, N-Sims-Young 2021.

These results prove the AKLT point is part of an open region on the red
phase of the n = 3 phase diagram.

The uniqueness condition of the gapped ground state can be relaxed
(N-Sims-Young 2021) but we have no general stability results yet that do
not require frustration free property.

The point u = 0,v = —1, where we have dimerization, is not frustration
free:

<hx,x+1> > inf Spec(hx,x-‘rl)-

Recent proof of open gapped region in phase diagram for large n
(Bj'c')rnberg—l\/IUthacher—N—UeItschi, 2021).
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Figure: Ground state phase diagram
for the S =1 chain (n = 3) with
nearest-neighbor interactions

oS #Sx + Sxi1 +sin @(Sx - Sxi1)?.

v

¢ = 0 Heisenberg AF chain,
Haldane phase (Haldane, 1983)

tan¢ = 1/3, AKLT point
(Affleck—Kennedy—Lieb—Tasaki,
1987,1988), FF, MPS, gapped
tan ¢ = 1, solvable, gapless,
SU(3) invariant, (Sutherland,
1975)

¢ € [r/2,3m /2], ferromagnetic,
FF, gapless

¢ = —m /2, solvable, SU(3)
invariant, Temperley-Lieb
algebra, dimerized, gapped
(Klimper; Affleck,1990)

¢— = —m /4 gapless,
Bethe-ansatz, (Takhtajan;
Babujian, 1982)
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Figure: Ground state phase diagram
for the chain with nearest-neighbor
interactions uT + v@ for n > 3,
studied by Tu & Zhang, 2008.
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v =—2nu/(n—2),n> 3, Bethe
ansatz point (Reshetikhin, 1983)
v = —2u: frustration free point,
equivalent to L projection onto
symmetric vectors © one. Unique
g.s. if n odd; two 2-periodic g.s.
for even n; spectral gap in all
cases and stable phase
(N-Sims-Young, 2021).

u=0,v =—1. Equivalent to the
SU(n) —P©) models aka
Temperley-Lieb chain; Affleck,
1990, Nepomechie-Pimenta 2016).
Dimerized for all n > 3
(Aizenman, Duminil-Copin, Warzel,
2020); ‘Stability’ for large n
(Bjérnberg—l\/lUhlbacher—N—UeItschi,
2021).



